Abstract No. brom234

The Influence of Calcium on the Refolding of Alpha-Lactalbumin to the Molten Globule State as Evaluated by Time-Resolved FTIR Microscopy

P. Bromberg and M.R. Chance (Albert Einstein College of Medicine)

Beamline(s): U2B

ABSTRACT: Ordered secondary structures, such as solvated helices, can form on very fast timescales (< 500 microseconds) as shown by our rapid mixing continuous flow IR microscopy investigation of cytochrome-c refolding. However, the amide I band profile observed in IR spectroscopy can provide information on a variety of ordered structures (different types of helices and beta-sheets), turn structure, unordered structure and aggregated peptides. Therefore, we want to extend our study of MG formation to alpha/beta proteins. A good candidate protein for such a study is alpha-lactalbumin. The MG state of alpha-lactalbumin forms under acidic conditions in the absence (apo-form) or presence (holo-form) of calcium and contains alpha-helical and antiparallel beta-sheet structure along with turn structure [Troullier et al., (2000) Nat. Str. Biol., 7(1): 78-86]. We will acquire equilibrium IR spectra of both apo-form and holo-form (CaCl₂ present) MG alpha-lactalbumin under acidic conditions (pD = 2). Prior to performing a refolding experiment, the minimum concentration of urea required to unfold the protein under acidic conditions using CD and IR will be established. For the equilibrium IR studies, labeled urea (13 C, 15 N) repeatedly lyophilized in D₂O will have to be used to ensure that the amide I band of urea appears below 1600 cm⁻¹ away from the amide I absorption of the protein. Once the refolding protocol has been established, unfolded alpha-lactalbumin (pD = 2, in urea) will be refolded to the MG state by rapid dilution using our rapid mixing cell(s) and the influence of calcium on this process will be examined.